
Introduction II

Overview

▪ Today we will introduce multicore hardware (we will introduce 

many-core hardware prior to learning OpenCL)

▪ We will also consider the relationship between computer hardware and 

programming
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Benefits of Multicore Hardware

Speedup

▪ The goal of multiple processor is to increase performance

S(p) = ts (Execution time on a single processor)

  tp (Execution time with p processors)

▪ Linear speedup – “a speedup factor of p with p processors”

▪ Is superlinear speedup (> p) possible?

▪ i.e. when tp < ts/p
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Benefits of Multicore Hardware

Speedup

▪ The goal of multiple processor is to increase performance

S(p) = ts (Execution time on a single processor)

  tp (Execution time with p processors)

▪ Linear speedup – “a speedup factor of p with p processors”

▪ Is superlinear speedup (> p) possible?

▪ i.e. when tp < ts/p – this would mean that the parallel parts of the program 

can be executed faster in sequence then ts!
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Benefits of Multicore Hardware

Speedup

▪ Cases where superlinear speedup is possible:

▪ When multicore system processors have more memory than single 

processor system

▪ When hardware accelerators are used in the multiprocessor system and 

not available in the single processor system

▪ When a nondeterministic algorithm is executed (e.g., a solution can be 

found quickly in one part of parallel implementation) 
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Parallel Architecture Taxonomy
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Only instruction 
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Many core 

processors most 

common, Data level 
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multiple data 

elements

Multicore processor, 

Thread level 

parallelism – each 
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Each processor 

performs different 
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uncommon 



Parallel Architecture Taxonomy

▪ SIMD vs. MIMD
▪ SIMD

▪ Single Instruction Stream, Multiple Data Streams

▪ Data-level parallelism can be exploited

▪ MIMD
▪ Multiple Instruction Streams, Multiple Data Streams

▪ Thread-level parallelism can be exploited

▪ Relatively low cost to build due to the use of same processors as those found in 
single processor machines

▪ In general MIMD is more flexible than SIMD
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MIMD

▪ The flexibility of MIMD is demonstrated by the two categories of 

MIMDs currently used:

   1. Centralized Shared-Memory Architectures 

 (< 100 processors)

 2. Distributed-Memory Architectures 

 (> 100 processors)
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Centralized Shared-Memory Architectures

▪ SMP (Symmetric Shared-Memory Multiprocessors) or NUMA 

(Non-Uniform Memory Access)

▪ Example: Multi-core processors

▪ Multiple processors on the same die
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Centralized Shared-Memory Architectures
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Distributed-Memory Architectures

▪ Two important aspects of these architectures is the processors 

and the interconnection network

▪ Example: Clusters 
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Distributed-Memory Architectures

▪ Can have a shared memory address space or multiple address 
spaces

▪ If shared memory address space
 …communicate used load and store instructions.

▪ If multiple address spaces
 …communicate via message-passing

▪ Message Passing Interface (MPI) library used in C (and 
other languages)
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Distributed-Memory Architectures
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How do we take advantage of MIMD?

▪ Multiple processes (programs) executing at the same time

▪ A single program with multiple threads executing at the same time

▪ Many general-purpose programming languages support multi-thread 

concurrent programs!

▪ Example: Java, C++
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Software Concurrency

▪ Hardware improvements can have an affect on how we develop 

software

▪ Instruction level parallelism is typically independent of whether or 

not software is sequential or concurrent

▪ Thread level parallelism techniques like multicore are usually 

dependent on the software being concurrent!
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Instruction-Level vs. 

Thread-Level Parallelism

A program can 

contain 

multiple 

threads

Thread-level 

Parallelism

(high level)

Each thread 

contains many 

instructions

Instruction-level 

Parallelism

(low level)
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Instruction-Level vs. 

Thread-Level Parallelism
▪ Multithreading is an instruction-level approach to multi-threaded 

programs

▪ Can be used on a single processor system

▪ Switch between threads using fine-grained (between every instruction) 

or coarse-grained (during an expensive stall) multithreading

▪ Need separate PC for each thread

▪ Also need to separate memory, etc.

▪ Hyperthreading is an Intel approach using Simultaneous multithreading 

(SMT)
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Symmetric Multicore Design
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Asymmetric Multicore Design

Source: Fundamentals of Multicore 

Software Development
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Massively Parallel Systems

▪ GPU Computing

▪ 100s or 1000s of GPUs

▪ Massively Parallel Processor Arrays (MPPAs)

▪ Array of 100s of CPUs + RAM

▪ Grid Computing

▪ Nodes often perform different tasks

▪ Cluster Computing

▪ Nodes often perform the same task
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Introduction II

Summary

▪ Overview of multicore hardware

References

▪ “Computer Architecture: A Quantitative Approach” by Hennessy 

& Patterson

▪ “Fundamentals of Multicore Software Development” by Victor 

Pankratius & Ali-Reza Adl-Tabatabai & Walter Tichy

Next time

▪ Implicit Parallelism and OpenMP
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