
Introduction II

Overview

▪ Today we will introduce multicore hardware (we will introduce

many-core hardware prior to learning OpenCL)

▪ We will also consider the relationship between computer hardware and

programming

© J.S. Bradbury CSCI 4060U Lecture 2 - 1

Benefits of Multicore Hardware

Speedup

▪ The goal of multiple processor is to increase performance

S(p) = ts (Execution time on a single processor)

 tp (Execution time with p processors)

▪ Linear speedup – “a speedup factor of p with p processors”

▪ Is superlinear speedup (> p) possible?

▪ i.e. when tp < ts/p

© J.S. Bradbury CSCI 4060U Lecture 2 - 2

Benefits of Multicore Hardware

Speedup

▪ The goal of multiple processor is to increase performance

S(p) = ts (Execution time on a single processor)

 tp (Execution time with p processors)

▪ Linear speedup – “a speedup factor of p with p processors”

▪ Is superlinear speedup (> p) possible?

▪ i.e. when tp < ts/p – this would mean that the parallel parts of the program

can be executed faster in sequence then ts!

© J.S. Bradbury CSCI 4060U Lecture 2 - 3

Benefits of Multicore Hardware

Speedup

▪ Cases where superlinear speedup is possible:

▪ When multicore system processors have more memory than single

processor system

▪ When hardware accelerators are used in the multiprocessor system and

not available in the single processor system

▪ When a nondeterministic algorithm is executed (e.g., a solution can be

found quickly in one part of parallel implementation)

© J.S. Bradbury CSCI 4060U Lecture 2 - 4

Parallel Architecture Taxonomy

SISD SIMD

MISD MIMD

Data Stream

In
s
tr

u
c
ti
o
n

S
tr

e
a
m

M
u

lt
ip

le

S
in

g
le

Single Multiple

© J.S. Bradbury CSCI 4060U Lecture 2 - 5

Parallel Architecture Taxonomy

SISD SIMD

MISD MIMD

Data Stream

In
s
tr

u
c
ti
o
n

S
tr

e
a
m

M
u

lt
ip

le

S
in

g
le

Single Multiple

© J.S. Bradbury CSCI 4060U Lecture 2 - 6

Only instruction

level parallelism,

uniprocessor

Parallel Architecture Taxonomy

SISD SIMD

MISD MIMD

Data Stream

In
s
tr

u
c
ti
o
n

S
tr

e
a
m

M
u

lt
ip

le

S
in

g
le

Single Multiple

© J.S. Bradbury CSCI 4060U Lecture 2 - 7

Only instruction

level parallelism,

uniprocessor

Many core

processors most

common, Data level

parallelism – use

each instruction with

multiple data

elements

Parallel Architecture Taxonomy

SISD SIMD

MISD MIMD

Data Stream

In
s
tr

u
c
ti
o
n

S
tr

e
a
m

M
u

lt
ip

le

S
in

g
le

Single Multiple

© J.S. Bradbury CSCI 4060U Lecture 2 - 8

Only instruction

level parallelism,

uniprocessor

Many core

processors most

common, Data level

parallelism – use

each instruction with

multiple data

elements

Multicore processor,

Thread level

parallelism – each

processor has an

instruction with data

Parallel Architecture Taxonomy

SISD SIMD

MISD MIMD

Data Stream

In
s
tr

u
c
ti
o
n

S
tr

e
a
m

M
u

lt
ip

le

S
in

g
le

Single Multiple

© J.S. Bradbury CSCI 4060U Lecture 2 - 9

Only instruction

level parallelism,

uniprocessor

Many core

processors most

common, Data level

parallelism – use

each instruction with

multiple data

elements

Multicore processor,

Thread level

parallelism – each

processor has an

instruction with data

Each processor

performs different

instructions on

the same data –

uncommon

Parallel Architecture Taxonomy

▪ SIMD vs. MIMD
▪ SIMD

▪ Single Instruction Stream, Multiple Data Streams

▪ Data-level parallelism can be exploited

▪ MIMD
▪ Multiple Instruction Streams, Multiple Data Streams

▪ Thread-level parallelism can be exploited

▪ Relatively low cost to build due to the use of same processors as those found in
single processor machines

▪ In general MIMD is more flexible than SIMD

© J.S. Bradbury CSCI 4060U Lecture 2 - 10

MIMD

▪ The flexibility of MIMD is demonstrated by the two categories of

MIMDs currently used:

 1. Centralized Shared-Memory Architectures

 (< 100 processors)

 2. Distributed-Memory Architectures

 (> 100 processors)

© J.S. Bradbury CSCI 4060U Lecture 2 - 11

Centralized Shared-Memory Architectures

▪ SMP (Symmetric Shared-Memory Multiprocessors) or NUMA

(Non-Uniform Memory Access)

▪ Example: Multi-core processors

▪ Multiple processors on the same die

© J.S. Bradbury CSCI 4060U Lecture 2 - 12

Centralized Shared-Memory Architectures

© J.S. Bradbury CSCI 4060U Lecture 2 - 13

Memory I/O Devices

Cache

Processor

Cache

Processor

Cache

Processor

Cache

Processor

All processors

share memory

and I/O devices

Distributed-Memory Architectures

▪ Two important aspects of these architectures is the processors

and the interconnection network

▪ Example: Clusters

© J.S. Bradbury CSCI 4060U Lecture 2 - 14

Distributed-Memory Architectures

▪ Can have a shared memory address space or multiple address
spaces

▪ If shared memory address space
 …communicate used load and store instructions.

▪ If multiple address spaces
 …communicate via message-passing

▪ Message Passing Interface (MPI) library used in C (and
other languages)

© J.S. Bradbury CSCI 4060U Lecture 2 - 15

Distributed-Memory Architectures

© J.S. Bradbury CSCI 4060U Lecture 2 - 16

I/O

Devices

Processor

+

Cache

Memory
I/O

Devices

Processor

+

Cache

Memory

I/O

Devices

Processor

+

Cache

Memory
I/O

Devices

Processor

+

Cache

Memory

Inter-

connected

Network

How do we take advantage of MIMD?

▪ Multiple processes (programs) executing at the same time

▪ A single program with multiple threads executing at the same time

▪ Many general-purpose programming languages support multi-thread

concurrent programs!

▪ Example: Java, C++

© J.S. Bradbury CSCI 4060U Lecture 2 - 17

Software Concurrency

▪ Hardware improvements can have an affect on how we develop

software

▪ Instruction level parallelism is typically independent of whether or

not software is sequential or concurrent

▪ Thread level parallelism techniques like multicore are usually

dependent on the software being concurrent!

© J.S. Bradbury CSCI 4060U Lecture 2 - 18

Instruction-Level vs.

Thread-Level Parallelism

A program can

contain

multiple

threads

Thread-level

Parallelism

(high level)

Each thread

contains many

instructions

Instruction-level

Parallelism

(low level)

© J.S. Bradbury CSCI 4060U Lecture 2 - 19

Instruction-Level vs.

Thread-Level Parallelism
▪ Multithreading is an instruction-level approach to multi-threaded

programs

▪ Can be used on a single processor system

▪ Switch between threads using fine-grained (between every instruction)

or coarse-grained (during an expensive stall) multithreading

▪ Need separate PC for each thread

▪ Also need to separate memory, etc.

▪ Hyperthreading is an Intel approach using Simultaneous multithreading

(SMT)

© J.S. Bradbury CSCI 4060U Lecture 2 - 20

Symmetric Multicore Design

© J.S. Bradbury CSCI 4060U Lecture 2 - 21

L2

Pro.

Core

L1

Chip

External

connections

External

connections

Bus

Bus

BusBus

L2

Pro.

Core

L1

L2

Pro.

Core

L1

L2

Pro.

Core

L1

External

connections

External

connections

Source: Fundamentals of Multicore

Software Development

Asymmetric Multicore Design

Source: Fundamentals of Multicore

Software Development

© J.S. Bradbury CSCI 4060U Lecture 2 - 22

State-of-the-art

superscalar

processor code

Chip Smaller more

power-efficient

processor

cores

Massively Parallel Systems

▪ GPU Computing

▪ 100s or 1000s of GPUs

▪ Massively Parallel Processor Arrays (MPPAs)

▪ Array of 100s of CPUs + RAM

▪ Grid Computing

▪ Nodes often perform different tasks

▪ Cluster Computing

▪ Nodes often perform the same task

CSCI 4060U Lecture 2 - 23© J.S. Bradbury

Introduction II

Summary

▪ Overview of multicore hardware

References

▪ “Computer Architecture: A Quantitative Approach” by Hennessy

& Patterson

▪ “Fundamentals of Multicore Software Development” by Victor

Pankratius & Ali-Reza Adl-Tabatabai & Walter Tichy

Next time

▪ Implicit Parallelism and OpenMP

© J.S. Bradbury CSCI 4060U Lecture 2 - 24

	Slide 1: Introduction II
	Slide 2: Benefits of Multicore Hardware
	Slide 3: Benefits of Multicore Hardware
	Slide 4: Benefits of Multicore Hardware
	Slide 5: Parallel Architecture Taxonomy
	Slide 6: Parallel Architecture Taxonomy
	Slide 7: Parallel Architecture Taxonomy
	Slide 8: Parallel Architecture Taxonomy
	Slide 9: Parallel Architecture Taxonomy
	Slide 10: Parallel Architecture Taxonomy
	Slide 11: MIMD
	Slide 12: Centralized Shared-Memory Architectures
	Slide 13: Centralized Shared-Memory Architectures
	Slide 14: Distributed-Memory Architectures
	Slide 15: Distributed-Memory Architectures
	Slide 16: Distributed-Memory Architectures
	Slide 17: How do we take advantage of MIMD?
	Slide 18: Software Concurrency
	Slide 19: Instruction-Level vs. Thread-Level Parallelism
	Slide 20: Instruction-Level vs. Thread-Level Parallelism
	Slide 21: Symmetric Multicore Design
	Slide 22: Asymmetric Multicore Design
	Slide 23: Massively Parallel Systems
	Slide 24: Introduction II

