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ABSTRACT
Many computer science students complete their undergraduate
degrees with insufficient testing skills and knowledge. To under-
stand the gaps in students’ testing skills and knowledge, we ana-
lyzed 1014 software tests written by 12 groups in an undergraduate
Software Quality Assurance (SQA) course project. In the project
the student groups were provided a requirements document and
were instructed to follow Test Driven Development (TDD) prac-
tices using black-box tests. To understand how the groups applied
black-box testing in their project, we created an automatic tool to
sort the tests into categories or "test buckets." By analyzing the
test bucket data, we were able to assess the effectiveness and effi-
ciency of student-written tests.We observed that the student groups
were significantly more likely to test for explicit requirements than
implicit requirements and significantly more likely to test happy
paths than invalid inputs. Furthermore, students inefficiently tested
happy paths, invalid inputs and explicit requirements resulting in a
higher proportion of software tests with duplicate intent. Based on
these results we provide insights into how black-box test education
can be improved.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Applied computing → Education; • Social and profes-
sional topics→ Software engineering education.
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1 INTRODUCTION
The issue of insufficient software knowledge in recent computer sci-
ence graduates has been documented in the literature for more than
20 years [20, 21]. The need for industry-relevant software educa-
tion has also been identified [15]. This knowledge gap is especially
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concerning for software testing education when one considers the
relationship between software testing and the development of high
quality software.

Software testing is a challenging topic to learn and a challenging
topic to teach [3]. To improve the quality of software testing edu-
cation, researchers have focused on different strategies including
adopting test driven development early in computer science cur-
riculum [12], utilizing testing checklists [4], running student tests
against other student’s code [18], increasing student engagement
through gamification [16] and providing high quality feedback in
software test education tools [11, 19]. In addition to new approaches
to software testing education, there has also been empirical research
focused on better understanding testing education including as-
sessing software testing feedback from instructors and teaching
assistants [3], surveying perceptions of students and teaching as-
sistants [3], studying software testing mistakes by students versus
industry [14] and analyzing student test suites [13].

Most of the software testing education research has focused on
analyzing secondary data such as instructor feedback or has focused
on surveys about test education perceptions. Very little research has
studied actual software tests written by students to understand the
gaps in testing education. This observation is supported by a recent
survey in which Garousi et al. found very little work on the analysis
of tests to understand student mistakes [17]. When research does
focus on student-written tests, it focuses almost exclusively on unit
testing [1, 5, 9, 10, 13]. Furthermore, there is a lack of data sets of
student-written tests to analyze. This lack of data sets and analysis
of student written software testing artifacts is contrasted by the
rich literature on data sets and analysis of student written computer
programs. For example, long running projects like Blackbox have
collected several terabytes of source code data that are available to
analyze [7, 8].

To address this issue, we aim to assess both the effectiveness
and efficiency of black-box tests written by students in a senior un-
dergraduate elective course on Software Quality Assurance (SQA).
In particular, we are interested in students ability to test explicit
versus implicit requirements and happy path versus invalid input
tests. We advocate that identifying the types of test students strug-
gle with can provide valuable insight to educators. Furthermore,
by adjusting teaching materials and learning activities to address
the gaps observed in student tests, educators can improve software
testing education practices.

2 A SOFTWARE QUALITY ASSURANCE
COURSE PROJECT

The data discussed and analyzed in our research was produced in a
senior undergraduate elective course on software quality assurance
(SQA). The course spends approximately 50% of the lectures on the
topic of software testing and includes a major course project worth
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Figure 1: Software Quality Assurance Course Project Phases

60% of the student’s final grade. The SQA course project is a full
stack development project designed to emulate the experience and
challenge of working in a real industry software team. Students
work in groups of 3-4 students, and are instructed to complete
the project using agile development practices based on Extreme
Programming [6]. Most of the assessment is not based on code
correctness, but instead on adherence to agile practices, the quality
of source code and the completeness of the testing. The project is
based on the development of a software system with a defined front
end and back end that is specified in a requirements document. The
system is transactional in nature and varies from year-to-year. For
example, the most recent system was an auctioning system that
allowed users and administrators to input front-end transactions
via text or file input, and merging and storing all data in local file
storage via the back end. Other past projects include the develop-
ment of a banking application and a ticketing system. The intent
of the project design is not to focus on the development of a novel
software system, but is instead to enforce best software design prac-
tices and encourage the use of a consistent software development
process.

The requirements document for the project is intended to be
a full software specification and includes both requirements and
constraints for the front-end transactions as well as any required file
formats. Not all requirements are explicit – some are implicit. For
example, in the auctioning system, there is no explicit requirement
that a bid cannot be negative or zero. Furthermore, the requirements
document includes omissions and inconsistencies (both planned and
unplanned). To address issues with the requirements, the groups
have access to a “client” account via a course Slack1 channel. One of
the key learning outcomes of the project is for students to improve
their professional communication skills by asking questions as
needed. Groups must address the client’s feedback and clarifications
in their development.

To support the development process, groups are required to
utilize GitHub for version control. In addition to committing all
source code, tests, scripts, and documentation to GitHub, there
are six biweekly phases to the project which each have their own
defined deliverables (see Fig. 1):

1https://slack.com/

• Phase 1: Front-end black-box test creation for test-driven de-
velopment. The black-box test suites should provide require-
ment coverage based on both the specification document and
the implicit requirements provided by the client. Students
are evaluated on the completeness of their test suite, as well
as adherence to input and output format specifications that
are designed to ensure that all student projects are inter-
changeable. This is critical for later phases of the project,
where students are required to integrate other students’ code
with their own.

• Phase 2: Rapid prototyping of the front-end component
including a design specified using a UML class diagram and
an implementation in C++ or Java.

• Phase 3: Automated black-box testing of the front-end pro-
totype from Phase 2 using the test suite from Phase 1. This
phase requires students towrite automated test scripts, record
test case results documenting all failure tests, causes of fail-
ures and fixes. During the testing process the test suite and
the prototype are modified to address failed tests. The black-
box testing is rerun until all tests pass. The iterative approach
used in Phase 3, allows students to discover that either their
code has errors, or their tests have errors (or both), and they
are required to both fix the issues and report their results as
part of their submission.

• Phase 4: Rapid prototyping of the back-end component. This
phase has the same deliverables as Phase 2 except for the
back end instead of the front end.

• Phase 5: Development of white-box unit tests for the back
end. Results for the unit tests are recorded (similar to Phase
3) and the tests and/or prototype are fixed to address failed
tests. This process is repeated until all tests pass.

• Phase 6: Integration and delivery involves merging the
tested front end from another group (Phase 3 output) with
the tested back-end component from Phase 5 to create a com-
plete software system. The integration of another groups’
front end with their own back end ensures that students
experience working with and modifying other developers’
code – a common activity in industry projects. The final
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integrated application is automatically tested using student-
written test scripts. The integration tests are a combination
of the black-box tests written in Phase 1 combined with
other operational tests written specifically for integration
testing. All test results are recorded, fixes made for failed
tests with the process repeated until all tests pass. Once all
integration tests are passed, the full software system is ready
to be deployed.

3 METHODOLOGY
3.1 Data Collection and Analysis
While there are multiple types of test data produced in the above
course project, the analysis in our research focuses on the black-
box tests that have been successfully used to test the front-end
component in Phase 3. We selected the test cases after Phase 3
because this increased the likelihood that each group’s tests can
be run on their completed front end. Recall that the test data was
stored in each group’s GitHub project repository.

To start, each group’s test data was cleaned by standardizing
the student’s file organization, anonymizing the files, and creat-
ing a configuration file to document any minor implementation
variations.

To analyze the data, we built an automated system that extracted
a given group’s test data and categorized the individual tests into
test buckets. The test buckets are defined as groups of related test
cases that are related to a specific requirement. All the test buckets
have been predefined based on the requirements specification docu-
ment and labelled as explicit requirements or implicit requirements.

In addition to mapping the test cases to requirement-based test
buckets, the automated system also analyzes the test cases sequen-
tial to determine if input data is valid (happy path) or invalid based
on the requirements document. If an invalid input is encountered,
the test is labeled as an invalid test. If no invalid inputs are detected,
a test case is labeled as a happy path test.

3.2 Data Exclusion Criteria
While best efforts were made to analyze all student test data, we
ultimately did establish data exclusion criteria. First, if a group’s
test suite had a major deviation from the requirements, the test
suite was excluded. A test suite with a major deviation was defined
as being not suitable for testing another group’s software system
and would require considerable manual analysis to pre-process and
analyze. Second, we decided to exclude outlier test buckets that
were tested by at most one group.

3.3 Metrics
3.3.1 Test Suite Effectiveness. Test suite effectiveness is defined
by coverage of the test buckets. To measure the effectiveness, the
following equation is used:

• Let 𝑥 be the distinct buckets covered by a given test suite.
• Let 𝑛 be the number of total buckets possible based on the
requirements.

Effectiveness =
(𝑥
𝑛

)
× 100%

3.3.2 Test Suite Efficiency. Test suite efficiency is defined by the
proportion of the test suite that are distinct tests. To measure effi-
ciency, the following equation is used:

• Let 𝑥 be the distinct buckets covered by a given test suite.
• Let 𝑡 be the total number of tests in the test suite.

Efficiency =

(𝑥
𝑡

)
× 100%

3.3.3 Metric Threshold. The use of metrics can be enhanced by
defining threshold values. We define the thresholds values for the
effectiveness and efficiency of test suites using the thresholds pro-
posed by Alves et al.[2]. They define four threshold categories
which are widely used for software testing metrics – low (0-70%),
moderate (70-80%), high (80-90%), and very high (90-100%).

4 RESULTS
Test suites were collected from 17 groups in the Winter 2023 cohort
of an upper-year elective software quality assurance course at On-
tario Tech University. The 17 test suites were collected from GitHub
repositories and after applying the exclusion criteria (see Section
3.2) we had 12 test suites available for analysis. These test suites
included 1014 individual software tests and 49 requirements-based
test buckets.

We will first consider the effectiveness and efficiency of the test
suites based on the coverage of explicit vs. implicit requirements.
Next we will analyze the effectiveness and efficiency with respect to
covering explicit happy paths and invalid inputs. After presenting
the effectiveness and efficiency results, we will discuss our results
in the broader context of software testing education.

4.1 Explicit vs. Implicit Requirement Tests
In an effort to understand the effectiveness and efficiency of student
test suites, we first analyzed the test suites based on the coverage
of explicit and implicit requirement test buckets. We first analyzed
the data using an unpaired t-test and found that the number of
groups testing explicit requirement buckets (M = 9.20, SD = 1.15)
was higher than those testing implicit requirement buckets (M =
4.45, SD = 2.19), with a significant difference observed, t(38) = 8.59,
p < 0.0001. Next, we performed a different analysis using a paired
t-test and found that explicit requirements testing is significantly
more effective (M = 77.30, SD = 18.21) than testing for implicit
requirements (M = 37.08, SD = 25.27), t(11) = 4.78, p = 0.0006. The
results of which groups covered the specific explicit and implicit
requirement buckets is presented in Figure 2. Explicit requirements
were all tested bymore groups than any of the implicit requirements
(with one exception). This exception was the implicit requirement
that the login should fail if the wrong username is given and was
tested by all 12 groups Overall, the results highlight that students
had difficulty identifying and testing implicit requirements.

After considering the coverage of the requirements, we next in-
vestigated the number of tests in each distinct requirements bucket.
In other words, we looked at the amount of duplication in testing
each explicit and implicit requirement. When we consider the is-
sue of duplicate tests and over-testing, implicit requirements are
more efficiently tested with fewer duplicates (see Figs. 4a & 4b.We
analyzed the data using a paired t-test and found that the testing
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Figure 2: Number of Groups vs. Test Bucket by Type of Requirement
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efficiency for implicit requirements (M = 70.22, SD = 25.39) was
significantly higher than explicit requirements (M = 37.22, SD =
17.39), t(11) = 5.63, p = 0.0002. This indicates that the students’
test suites have more duplicate tests for explicit requirements than
implicit.

4.2 Happy Path vs. Invalid Input Tests
We also analyzed happy path test and invalid input tests with re-
spect to effectiveness and efficiency. Overall, when we performed
our analysis, we found that the 9 happy path test buckets were
more effectively tested than the 40 invalid input test buckets (see
Fig. 3). We used a paired t-test and found that the groups tested
happy paths (M = 78.70, SD = 20.89) with a higher effectiveness
than they tested invalid inputs (M = 56.88, SD = 17.78), with a sig-
nificant difference observed, t(11) = 3.15, p = 0.0092. Therefore, the
invalid input test buckets are more often missed by students than
the happy path buckets.
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(a) Explicit Requirements Tests (b) Implicit Requirement Tests

(c) Happy Path Tests (d) Invalid Input Tests

Figure 4: Bucket Coverage vs. Duplicates by Group

Furthermore, the efficiency for testing invalid input buckets
was significantly higher (M = 55.25, SD = 17.67) than the happy
path buckets (M = 25.14, SD = 16.00), t(11) = 8.24, p < 0.0001 (see
Figs. 4c & 4d). This supports the result that invalid input buckets
have fewer redundant tests than happy path buckets.

4.3 Discussion
The results of the student-written tests in our dataset show some
interesting trends that require further discussion, as well as con-
firm some of our expectations about where students might face
challenges in testing (see Fig. 5).

When we consider the types of requirement that students test
adequately, it is perhaps not surprising that implicit requirements
are statistically not as well tested as explicit requirements. The
identification and testing of implicit requirements are more likely
to benefit from experience as well as domain knowledge of the
software-under-test. In our case, we deliberately chose a system that
would have similarity with existing software the students may have
used. For example, an auction site would be very similar to a site
like eBay. An important point to note is that despite requirements
being implicit, there were groups that correctly identified the need
to test these requirements.
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6.6 Effectiveness and Efficiency of Types of Tests

Figure 10: Effectiveness and Efficiency of Types of Tests for 2023 and 2024

Figure 10 visualizes the effectiveness and efficiency percentages for 2023 and 2024 test suites. The

blue box outlines the area for low efficiency and the red box shows low effectiveness. The displays

the overall trend that all types of tests from 2023 and 2024 are inefficiently tested. For effectiveness,

the 2023 test suites had low effectiveness for the invalid inputs and implicit requirements. While

the 2024 test suites only had low effectiveness for the implicit requirements.

7 Conclusions

7.1 Summary & Conclusions

Testing is crucial to development to quality software and students have inadequate testing knowl-

edge. This thesis evaluated student-written test suites from a senior-level students through spec-

21

Figure 5: Effectiveness vs. Efficiency of Test Buckets

To understand why some student groups tested these require-
ments and some did not, it would be helpful to understand if the
ineffective testing of implicit requirements is a result of a lack of do-
main knowledge or a lack of understanding of the need to find and
test these requirements. Upon review of our course lecture materi-
als, we devoted minimal time to the identification of requirements
that need to be tested and instead devoted much of our attention
to the different coverage metrics and strategies for creating tests. It
is possible that there needs to be more focus and practice on the
analysis of requirements to support the creation of test cases.

The test efficiency differences between explicit and implicit re-
quirements are possibly related to the fact that students were more
confident writing tests for requirements that were presented explic-
itly. There may also be a bias toward testing explicit requirements
because they are viewed as more important since they have been
documented in the requirements specification. The tendency to
over-test explicit requirements may also demonstrate a need for
more emphasis in the course on testing suite performance, as well
as the practice of test maintenance where duplicate tests would be
removed. In other words, more time in the classroom discussing
why more tests are not always better.

When we consider happy path and invalid input tests, it is inter-
esting to observe that happy path testing is both more effective and
efficient. This might be due to the unbalanced frequency of invalid
input (40) and happy path buckets (9). In other words, the students
may have felt more of a need to balance out the overall number of
positive and negative tests. Another consideration is that students
may have first been interested in making sure that they created
tests to demonstrate that the software worked correctly (happy
path tests) and were less focused on invalid edge cases and negative
cases that they viewed as less likely to occur (invalid input tests).

Our results show some of the trends around the effectiveness
and efficiency of black-box student test creation. Unfortunately,
we can only hypothesize at this point the reasons for these trends.

A follow-up survey on students perceptions might be effective to
understand what motivates these testing behaviours. Regardless of
why students test software the way they do, the data we analyzed
does provide educators with insights into potential gaps in students’
testing knowledge and the application of that knowledge. Using this
information to enhance lectures and practice problems is one way
to address the ineffective and inefficient testing practices observed.

4.4 Threats to Validity
The main threat to validity we observed in our research is with
respect to external validity. Our analysis is based on data from
a specific project that occurs in one specific course, which may
not be representative of student testing in other courses at other
universities. Furthermore, the test suite evaluation was limited to
black-box requirements coverage and does not generalize to other
testing practices including unit testing and white-box testing.

5 CONCLUSION
Software testing is essential to the development of high quality
software, and there is a lack of publicly available data and analysis of
student-written tests. We believe that an evidence-based approach
to software test education necessitates more research into students
software testing knowledge, skills, and practices. In this paper,
we evaluated student-written test suites from an undergraduate
Software Quality Assurance (SQA) course project. Our evaluation
focused on understanding the effectiveness and efficiency of black-
box tests with an aim of using the data to provide insights into the
enhancement of software testing education. In our evaluation, we
observed that the student groups were significantly more likely
to test for explicit requirements than implicit requirements and
were also significantly more likely to test happy paths than invalid
inputs. Student test data also showed that they inefficiently tested
happy paths, invalid inputs and explicit requirements resulting in a
higher proportion of software tests with duplicate intent. Overall,
our results suggest that students have difficulty writing implicit
requirement tests and, to a lesser extent, invalid input tests, as
well as having difficulty reducing test suites. Based on the data, we
suggest that the students in the study could benefit from a better
understanding of how to create tests from a requirements document,
more knowledge on the need to test both positive and negative
inputs, and an understanding of the importance of software test
performance.

In the future, we plan to gather more data from future instances
of the SQA course and obtain student permission to use their
anonymized test data to create a public repository that can be
used by other researchers. We would also like to expand the study
to consider other kinds of tests (e.g., unit tests). We would also like
to explore the benefits of the automated system used to categorize
the test data in our research as a feedback tool for students. For
example, we could deploy the tool to provide automated feedback
to students prior to project submission, giving them insight into
the quality of their test suites.
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